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Some 40 years ago it was recognized by Furchgott and colleagues that the endothelium releases a
vasodilator, endothelium-derived relaxing factor (EDRF). Later on, several groups identified EDRF to
be a gas, nitric oxide (NO). Since then, NO was identified as one of the most versatile and unique
molecules in animal and human biology. Nitric oxide mediates a plethora of physiological functions,
for example, maintenance of vascular tone and inflammation. Apart from these physiological
functions, NO is also involved in the pathophysiology of various disorders, specifically those in
which regulation of blood flow and inflammation has a key role. The aim of the current review is to
summarize the role of NO in cerebral ischemia, the most common cause of stroke.
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Introduction

In the late 1970s, it was recognized that the
endothelium releases a factor that relaxes vascular
smooth muscle cells thereby causing vasodilatation
(Furchgott and Zawadzki, 1980). Since the chemical
structure of this factor was unknown at the time, it
was named EDRF (endothelium-derived relaxing
factor). Later on, EDRF was identified to be a color
and odorless gas, nitric oxide (NO) (Furchgott et al,
1987; Ignarro et al, 1987a, b). Since then, NO, the
most convincing gaseous signaling molecule in
vertebrates, was increasingly recognized as one of
the most versatile and unique molecules mediating
such diverse physiological functions as the main-
tenance of vascular tone, thrombotic-thrombolytic
homeostasis, cell growth, and inflammation. Apart
from its physiological functions, NO has also an
important role in the pathophysiology of various
disorders, specifically those in which regulation of
blood flow and inflammatory reactions are key
pathophysiological events.
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Nitric Oxide—Physiology

Nitric oxide is an uncharged gas that can easily cross
biological membranes. It is, however, quickly deac-
tivated by oxidation with a biological half-life of a
few seconds thereby limiting its spatial extent in
biological tissues (Gibson and Roughton, 1957;
Stamler et al, 1992). Nitric oxide is synthesized by
a group of three NO synthases (NOS) from L-arginine
(Furchgott and Zawadzki, 1980; Palmer et al, 1988), a
reaction that requires the presence of molecular
oxygen, nicotinamide adenine dinucleotide phos-
phate (NADPH), tetrahydrobiopterin (BH,), heme,
Flavin mononucleotide (FMN), and calmodulin (Bredt
and Snyder, 1990). Two constitutively expressed
isoforms, mainly located in endothelial cells and in
neurons (eNOS and nNOS, respectively) generate
low NO levels, and are constitutively expressed and
calcium dependent (Knowles et al, 1989). The third
isoform, inducible NOS (iNOS), is expressed in
many different cell types, for example, macrophages,
astrocytes, and microglia, and is calcium indepen-
dent (Fleming et al, 1991; Cho et al, 1992). Once
upregulated, iNOS produces large amounts of NO,
which can damage or even destroy cells, for example,
microorganisms or the brain tissue.

Nitric oxide toxicity usually occurs through a
direct interaction with various protein moieties. This
may result in the reversible formation of mixed
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disulfides between cysteines and glutathione,
termed S-glutathiolation (Cohen and Adachi, 2006),
the formation of nitrosothiols (Stamler, 1994), or
protein nitrosylation (Xu et al, 1998; Matsushita
et al, 2003). Toxicity may also result from formation
of peroxynitrite anion (ONOO™), a strong oxidant
and mediator of tissue injury after its combination
with superoxide anion (Dawson and Dawson, 1996).
Nitric oxide also can trigger apoptosis directly or via
ONOO~ (Leist et al, 1997a, b).

Apart from these direct actions, NO can also
promote intercellular signaling via activation of
soluble guanylate cyclase and subsequent formation
of cyclic guanosine monophosphate (cGMP). The
best documented signaling activity using this
mechanism is the migration of NO generated by the
endothelium into neighboring smooth muscle cells
whereupon NO relaxes vascular smooth cell through
Ca**-mediated formation of cGMP and phosphoryla-
tion of downstream kinases that ultimately impact
calcium availability (Murad et al, 1987).

Endothelial NOS-derived NO has furthermore
been demonstrated to have a key role in vascular
remodeling and angiogenesis (Papapetropoulos et al,
1997; Rudic et al, 1998; Murochara et al, 1998).

In the brain, NO is mainly formed by nNOS and
eNOS. Accordingly, it serves as a neurotransmitter
and neuromodulator (Garthwaite et al, 1988; Dawson
and Snyder, 1994; Dawson, 1995) and—among many
other functions—is concerned with the maintenance
of basal cerebral blood flow (CBF) (Tanaka, 1996).
Specifically, NO has been implicated in cerebral
autoregulation (Dirnagl et al, 1994; Richards et al,
1997; White et al, 2000), chemoregulation of CBF
(Iadecola, 1992; Thompson et al, 1996; Lavi et al,
2003), and neurovascular coupling (Dirnagl et al,
1994).

More recent evidence suggests a role of NO in
neuronal proliferation and differentiation. Tanaka
et al (1994) showed that NO inhibits neural prolif-
eration and differentiation in the developing
brain; in vitro data further supported a role for NO
in the differentiation of developing as well as adult
neuronal cells (Peunova and Enikolopov, 1995; Viani
et al, 1997). In vivo, NO negatively regulates
cell proliferation in the developing (Tegenge and
Bicker, 2009) as well as adult (Oh et al, 2010) brains
(see Gibbs, 2003; Contestabile and Ciani, 2004 for
reviews).

Neurogenesis, which in the adult brain seems
restricted to the subventricular zone, the olfactory
bulb, and the subgranular zone of the hippocampus
(Zhao et al, 2008), persists in the adult brain and
can be induced after cerebral insults (Zhao et al,
2008; Imayoshi et al, 2009). Nitric oxide exerts a
dual effect on neurogenesis: While nNOS-derived
NO decreases neurogenesis (Packer et al, 2003;
Moreno-Lopez et al, 2004; Zhu et al, 2006), NO
produced by endothelial (Reif et al, 2004) or
inducible (Luo et al, 2007; Bechade et al, 2011)
NOS seems to stimulate it.
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Nitric Oxide—Role in Cerebral Ischemic
Preconditioning

It was discovered in the early 1990s (Kitagawa et al,
1990) that exposing the brain to sublethal injury
increases its tolerance for subsequent insults
(Gidday, 2006). Among the stimuli investigated for
induction of tolerance are sublethal ischemia and
proinflammatory mediators (Stagliano et al, 1999;
Dawson and Dawson, 2000; Dirnagl et al, 2003; Kunz
et al, 2007). Nitric oxide seems to have a major role in
mediating ischemic tolerance induced by precondi-
tioning. While there is mounting evidence that
iNOS-derived NO is a key effector of ischemic
preconditioning (Park et al, 2003; Cho et al, 2005),
the contribution of constitutive NOS is not fully
elucidated yet (Gidday et al, 1999; Gonzalez-Zulueta
et al, 2000; Atochin et al, 2003).

Nitric Oxide—Pathophysiology in Stroke

Cerebral ischemia induces multiple and distinct
changes in cerebral NO content and signaling.
Occlusion of the middle cerebral artery (MCAo)
results in an increased production of NO by 20-fold
for up to 30minutes (Malinski et al, 1993; Kader
et al, 1993) most likely through increased calcium
availability and activation of nNOS (Huang et al,
1994). Thereafter, the brain tissue NO is reduced
below detectable levels for up to 7 days (Malinski
et al, 1993; Sugimura et al, 1998), indicating a
long-lasting NO deficiency in the ischemic brain.
If reperfusion occurs, NO concentration may
transiently increase by 50% for about 30minutes
(Fassbender et al, 2000; Uetsuka et al, 2002).
Concomitant with changes in NO levels, the activ-
ities of eNOS and nNOS increases within the first
few minutes after MCAo, but decrease significantly
thereafter (Kader et al, 1993). In contrast to the
constitutive NOS isoforms, iNO becomes upregu-
lated from 12hours after MCAo for up to 7 days
(Niwa et al, 2001).

In the chronic phase after cerebral ischemia,
angiogenesis has been shown to occur (Beck and
Plate, 2009); the extent of collateralization is a
predictor for neurological outcome after stroke
(Christoforidis et al, 2005). Nitric oxide has a crucial
role in angiogenesis after ischemic stroke: NO donor
DETA-NONOate increased angiogenesis after experi-
mental cerebral ischemia (Zhang et al, 2003;
Chen et al, 2004). Endothelial NOS-deficient mice
revealed significantly impaired neovascularization
after stroke, indicating that endothelial-derived NO
mediates this effect (Cui et al, 2009).

Based on the time course of ischemia-induced
changes in NO levels and NOS regulation in the
brain and cerebral blood vessels, several strategies
were suggested to manipulate the NO system for the
treatment of stroke.

When the cationic amino-acid substrate L-arginine
was administered intravenously after MCAo, CBF
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and spike activity were restored within the ischemic
penumbra (Dalkara et al, 1994), and infarct size
reduced (Morikawa et al, 1992, 1994). L-arginine’s
effect was enantiomer specific and not observed in
eNOS-deficient mice. By contrast, experiments using
NOS inhibitors and selective NOS isoform-deficient
mice revealed that NO generated by the neuronal
isoform is detrimental to tissue survival and neuro-
logical outcome (Huang et al, 1994; Hara et al, 1996;
Zaharchuk et al, 1997). This also applies to the
generation of NO by the inducible isoform following
ischemic challenge (Iadecola et al, 1995, 1997; Zhang
et al, 1996a; Zhao et al, 2003). In contrast to the
detrimental functions of nNOS and iNOS enzymatic
activity, eNOS and eNOS-derived NO is neuropro-
tective under most conditions of ischemia-reperfu-
sion, although oxygen radical generation and
enhanced injury can occur with eNOS uncoupling
in the presence of BH4 deficiency, a mechanism
implied in the pathophysiology of vascular diseases
(Landmesser et al, 2003; Alp and Channon, 2004).
Endothelial NOS knockout mice have lower post-
ischemic CBF levels and larger infarcts than their
wild-type littermates following MCAo (Lo et al,
1996; Huang et al, 1996). Interestingly, eNOS-
deficient mice not only exhibit larger infarcts, they
also show smaller penumbral regions (Lo et al, 1996),
indicating that eNOS may be critical for maintaining
and restoring penumbral and collateral blood flow.
Increases in infarct size in mice deficient in eNOS
phosphorylation (Atochin et al, 2007) or deficient in
the expression of the o-1 subunit of the obligate
heterodimer, soluble guanylate cyclase, are consis-
tent with these findings (Atochin et al, 2010).
Furthermore, deficient angiogenesis after stroke
might contribute to the increased postischemic
damage in eNOS null mice (Cui et al, 2009).
Another restorative mechanism after stroke that is
NO dependent is neurogenesis (see Zhang et al,
2005, 2008 for reviews). While iNOS-derived NO was
shown to be neurotoxic in the acute phase after
stroke, several studies suggest an important role of
the inducible isoform for cell proliferation after
experimental ischemia: iNOS-positive cells in-
creased significantly in the periinfarct zone 1 and 3
days after focal ischemia (Sehara et al, 2006), the
number of iNOS-positive cells increased with
increasing survival time (Corsani et al, 2008).
Treatment with iNOS inhibitor aminoguanidine
prevented postischemic neurogenesis (Zhu et al,
2003); the phenomenon could not be detected in
iNOS null mice, either (Zhu et al, 2003). Nitric oxide
produced by nNOS exerts negative effects on
neurogenesis (Packer et al, 2003; Moreno-Lopez
et al, 2004; Luo et al, 2007), nNOS inhibition has
been shown to increase neurogenesis after experi-
mental ischemia (Sun et al, 2005). Neuronal NOS
and iNOS therefore seem to have opposite roles in
postischemic neurogenesis. There are hints
that there is crosstalk between the neuronal and
inducible NOS isoform: genetic deletion of nNOS or
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Figure 1 Summary of therapeutical strategies influencing nitric
oxide signaling in ischemic stroke. eNOS, endothelial nitric oxide
synthases; iNOS, inducible NOS; nNOS, neuron NOS; PDE,
phosphodiesterase.

nNOS downregulation after cerebral ischemia-
induced iNOS upregulation and—thus—neurogenesis
while the protective effect of pharmacological nNOS
inhibition was abolished in iNOS-deficient mice
(Luo et al, 2007).

Given the ample evidence for NO-mediated neu-
roprotection after cerebral ischemia, several treat-
ment strategies have been examined that increase
postischemic NO content specifically generated by
eNOS activity to augment CBF to the penumbra. One
putative strategy is to replenish the early post-
ischemic NO deficit by application of NO or NO
precursors; another is to increase or modulate endo-
genous NO production/bioavailability by enhancing
eNOS activity (Endres et al, 2004); for example,
via the phosphatidylinositol 3-kinase (PI3-kinase)/
protein B kinase (Akt) pathway (Dimmeler et al,
1999). Another potential mechanism is to directly or
indirectly inhibit NOS, preferably nNOS and/or iNOS.
Putative treatment strategies are summarized in Figure 1.

Therapeutic Approaches
L-Arginine and Nitric Oxide Donors

After encouraging preclinical data following applica-
tion of the NO precursor L-arginine (Morikawa et al,
1992, 1994; Dalkara et al, 1994), other NO donors, for
example, nitrite, were reported to be neuroprotective
in various models of transient and permanent
cerebral ischemia (Willmot et al, 2005b; Jung et al,
2006). Several clinical trials were initiated. Applica-
tion of L-arginine, however, failed to significantly
improve outcome in stroke in preclinical and clinical
trials (see Bath et al, 2002 for a meta-analysis). The
main reason for the failure of translation was
probably the reduction of mean arterial pressure
following systemically administered NO/NO precur-
sors. The impact on cerebral perfusion pressure was
probably compensated to a greater extent in normally
perfused brain tissues as compared with the area



distal to occlusion. It seems likely that CBF in
normally perfused brain tissue increased at the
expense of blood flow in ischemic tissue, thereby
further reducing the already critically low penum-
bral perfusion (Vorstrup et al, 1986; Lassen, 1990).
By contrast, the only successful strategy delivering
NO without affecting CBF was the transdermal
application of glyceryl trinitrate. Glyceryl trinitrate
delivered in this way even improved systemic blood
flow; however, cerebral infarct size following MCAO
was unchanged (Willmot et al, 2006). Transdermal
application of glyceryl trinitrate is currently evalu-
ated in a clinical trial (ENOS, efficacy of nitric oxide
in stroke trial, start date July 2001 (ENOS Trial
Investigators, 2006)).

Nitric Oxide Synthase Inhibitors

The excessive production of NO by brain parench-
yma is a characteristic of ischemic stroke. Hence,
inhibition of NOS was viewed as an alternative
strategy to reducing NO availability in cells expres-
sing the neuronal isoform. In a first approach,
nonselective inhibition of NOS by No-nitro-L-argi-
nine methyl ester hydrochloride (L.-NAME) reduced
stroke volume after MCAo (Wei et al, 1994; Margaill
et al, 1997). Further approaches using the same
strategy, that is, pan-NOS inhibitors, yielded conflict-
ing results (Willmot et al, 2005a) most likely due to
their differential activity on the three different NOS
isoforms (eNOS: protective, nNOS/iNOS: destructive).

More selective approaches using nNOS and iNOS
inhibitors seem to be more promising. Pharmacolo-
gical inhibition of nNOS with 7-nitroindazole given
5 minutes after MCAo reduced infarct volume in rats
by up to 27% (Yoshida et al, 1994; Zhang et al,
1996b) and the application of aminoguanidine
(Zhang et al, 1996a; Cash et al, 2001), N-3-(amino-
methyl-benzyl)-acetamidine (Parmentier et al,
1999; Perez-Asensio et al, 2005), or 7-nitroindazol
adduct 3-bromo-7-nitroindazole (Srinivasan and
Sharma, 2012), all regarded as fairly selective iNOS
inhibitors significantly reduced postischemic brain
damage after transient and permanent cerebral
ischemia. Similarly, noncompetitive NOS inhibitors,
like the BH4 analog 4-amino-tetrahydro-L-biopterine,
which putatively inhibit only newly formed NOS
isoforms in vivo, that is, iNOS, reduced brain edema
when applied after traumatic brain injury (Terpolilli
et al, 2009). Another study reduced postischemic
brain damage effectively by using antisense oligo-
deoxynucleotide to iNOS (Parmentier-Batteur et al,
2001).

However, NOS inhibitors currently are not in use
clinically and are not evaluated in any ongoing
clinical stroke trial because most are nonselective
and may thus cause deleterious side effects due to
their actions on eNOS. The development of highly
specific inhibitors of NOS subtypes might make this
therapeutic approach feasible (Salerno et al, 2002).
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Statins (HMG-CoA-Reductase Inhibitors)

HMG-CoA-reductase inhibitors, so called statins,
completely inhibit the conversion of HMG coenzyme
A to mevalonate thereby blocking cholesterol and
isoprenoid intermediate synthesis (Liao and Laufs,
2005). Isoprenoid intermediates such as farnesylpyro-
phosphate and geranylgeranylpyrophosphate are
responsible for modulation of activity of several
small GTPases such as Ras, Rho, and Rac, which are
blocked by statins.

Originally developed to treat and prevent coronary
heart disease, statins were found to be effective also
in primary and secondary prevention of ischemic
stroke in several randomized clinical trials (Amar-
enco et al, 2004, 2006; Kennedy et al, 2007; Ridker
et al, 2008). Initially designed to treat hypercholes-
terinemia, it soon became evident that the beneficial
effect of statins in stroke patients was independent of
the serum cholesterol lowering effect of the com-
pounds (Treasure et al, 1995; Laufs et al, 2001).
Statins have a number of pleiotropic effects that
contribute to vascular integrity and health of the
blood vessel wall. Experimental stroke studies
revealed that long-term treatment with HMG-CoA-
reductase inhibitors induced eNOS upregulation
(Endres et al, 1998; Laufs et al, 2000b, 2002; Amin-
Hanjani et al, 2001) and blocked hypoxia induced
downregulation of eNOS in rodents (Laufs et al,
1997), thus increasing NO bioavailability and CBF
(Endres et al, 1998) and saving brain tissue from
ischemic injury (Endres et al, 1998; Laufs et al,
2000b, 2002; Amin-Hanjani et al, 2001). The effects
were dose dependent and observed with a number of
HMG-CoA-reductase inhibitors. That statins mediate
their neuroprotective effect through the upregulation
of eNOS and consecutive improvement of penumbral
blood flow was further validated by experiments
showing that treatment was ineffective in mutant
mice deficient in eNOS expression (Endres et al,
1998; Laufs et al, 2000b, 2002).

In addition to the eNOS-dependent effect of statins
in vivo, an eNOS-independent neuroprotective effect
of statins in vitro has been reported. This effect is
believed to be mediated by alterations in the
cholesterol containing neuronal membrane subdo-
mains thus protecting neuronal cultures against
NMDA (N-methyl-D-aspartate)-mediated excitotoxi-
city (Zacco et al, 2003; Bosel et al, 2005; Ponce et al,
2008). However, like all so far mentioned in vivo
studies, these studies applied statins as a pretreat-
ment underlining the role of statins treatment in the
prevention rather than the treatment of stroke.

To evaluate the value of statins for the acute
treatment of stroke, several studies applied HMG-
CoA-reductase inhibitors after the initiation of
cerebral ischemia. Surprisingly, also under these
conditions, statins significantly reduced infarct size
and brain edema formation (Sironi et al, 2003; Kilic
et al, 2005; Nagaraja et al, 2006; Sugiura et al, 2007;
Prinz et al, 2008; Mariucci et al, 2011). Interestingly,
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neuroprotection could be achieved by statin
application as late as 2 days after the onset of
MCAo (Sugiura et al, 2007). The main neuroprotec-
tive mechanisms are thought to be mediated via
enhancement of eNOS activity (Mariucci et al, 2011),
either by phosphorylation of eNOS at the S1177 site
via the PI3 k/Akt pathway (Kureishi et al, 2000;
Dimmeler et al, 2001) leading to reduction of
inflammation (Sugiura et al, 2007) and induction of
angiogenesis and neurogenesis (Chen et al, 2003) or
via mRNA stabilization by inhibition of the Rho
Kinase (ROCK) pathway (see below). This was
proven by measurements of CBF, which showed
that immediate postischemic CBF was not affected
by acute statin treatment (Kilic et al, 2005; Berger
et al, 2008), but that 5 days later—consistent with
angiogenesis—CBF was improved (Berger et al,
2008).

Given their widely proven neuroprotective actions
in experimental as well as in clinical trials, statins
are recommended for primary as well as for second-
ary prevention of stroke (Heart Protection Study
Collaborative Group, 2002; Adams et al, 2007).
Despite these clear recommendations, it remains
unclear whether HMG-CoA-reductase inhibitors in-
deed improve cerebral perfusion when given in the
acute postischemic phase (Kennedy et al, 2007).
Furthermore, most recent data suggest that statins
exhibit untoward effects such as an increased risk of
infection (Becker et al, 2011) and a higher incidence
of hemorrhagic stroke (Collins et al, 2004; Goldstein
et al, 2008; Vergouwen et al, 2008), stressing the
need for further clinical evaluation of HMG-
CoA-reductase inhibitors in the context of acute
ischemic injury.

Rho Kinase (ROCK)—Inhibitors

There is ample evidence that the neuroprotective
effect of statins/statin-induced upregulation of eNOS
activity is at least in part mediated by inhibition of
rho kinase (Laufs and Liao, 1998; Laufs et al, 1999,
2000a). Rho kinase (ROCK) is a serine—threonine
kinase whose activity is modulated by isoprenoid
intermediate geranygeranylpyrophosphate (GGPP).
Rho kinase is implicated in the pathophysiology of
atherosclerosis (Miyata et al, 2000), myocardial
infarction, and hypertension (Uehata et al, 1997).
Activation of Rho kinase in endothelial cells under
hypoxic conditions (Wolfrum et al, 2004) has been
related to the mechanism responsible for the down-
regulation of eNOS during and after ischemia
(Takemoto et al, 2002; Ming et al, 2002; Wolfrum
et al, 2004; Jin et al, 2006).

Rho kinase inhibitors such as fasudil or hydro-
xyfasudil rapidly lead to increased eNOS activity by
Akt kinase-dependent phosphorylation of eNOS at
S1179 (Fulton et al, 1999). This results in a
significant reduction of ischemic brain damage
when given before (Rikitake et al, 2005; Shin et al,
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2007) but also when given after (Shin et al, 2007)
experimental cerebral ischemia. The observed neuro-
protective mechanism was proven to be eNOS
dependent, based on the observation that ROCK
inhibitors failed to improve CBF or reduce infarct
volumes in eNOS null mice (Rikitake et al, 2005;
Shin et al, 2007).

Apart from their well-documented neuroprotective
effect in experimental stroke models, Rho kinase
inhibitors lower systemic blood pressure potently,
which may limit their use for the treatment of acute
stroke (Uehata et al, 1997; Shimokawa, 2002;
Takahara et al, 2003). Interestingly, however, the
ROCK inhibitor hydroxyfasudil, which is neuropro-
tective, caused hypotension in wild type as well as in
eNOS null mice (Shin et al, 2007), suggesting that the
blood pressure lowering effect may be mediated by
actions independent of eNOS activity. Therefore, the
development of ROCK inhibitors with selectivity
toward the cerebral circulation or toward ROCK2
(ROCKp), the isoform most mainly expressed in the
brain and heart (Nakagawa et al, 1996; Wei et al,
2001), may increase the potential of these com-
pounds in acute stroke therapy.

Phosphodiesterase Inhibitors

Emerging evidence suggests that phosphodiesterase
(PDE) inhibitors such as dipyramidol exhibit neuro-
protective effects beyond their well-known antipla-
telet properties. It was shown that dipyramidol
augmented the neuroprotective effects of statins in
an eNOS-dependent way (Kim et al, 2008). The
putative mechanism involves an increase in eNOS
S1177 phosphorylation, as demonstrated in sponta-
neously hypertensive rats (Oyama et al, 2011) based
on the reduction in postischemic brain damage
following pretreatment with PDE inhibitor cilostazol.
While these are the first encouraging data suggesting
that PDE inhibitors can also increase eNOS activity
in stroke patients (Serebruany et al, 2011), clinical
use of PDE inhibitors is so far restricted to secondary
prevention of ischemic stroke: Two large clinical
trials (ESPRIT: European/Australasian Stroke Pre-
vention in Reversible Ischaemia Trial (Halkes et al,
2007), ESPS-2: European Stroke Prevention Study 2
(Diener et al, 1996)) proved that dipyramidole in
combination with acetylsalicylic acid (ASA) is more
effective in preventing secondary ischemic insults
than ASA alone. Use of PDE inhibitors in the early
postischemic phase is currently not recommended
due to a possibly increased bleeding risk by PDE-
induced platelet inhibition. However, a recently
completed clinical trial with cilostazole (CAIST:
Cilostazol in acute ischemic stroke treatment (Lee
et al, 2011)) showed that cilostazol is comparable to
aspirine in terms of safety and bleeding complica-
tions so further clinical evaluation of cilostazol
mono- or combination-therapy in acute stroke is
ongoing (Nakamura et al, 2011).



Other Neuroprotective Strategies Influencing the
Endothelial Nitric Oxide Synthases Pathway

PI3 K/Akt pathway—S1177 phosphorylation—drugs:
Niacin (vitamin D3) was shown to increase the levels
of high-density lipoprotein (HDL), thus increasing
levels of HDL-cholesterol (HDL-C) and lowering
levels of serum triglycerides (Guyton, 1998; Elam
et al, 2000). High-density lipoprotein promotes
reendothelialization and stimulates migration of
endothelial cells (Seetharam et al, 2006) by increas-
ing NO concentration by activation of eNOS activity
via the PI3/Akt pathway (Mineo et al, 2003; Drew
et al, 2004).

After experimental ischemic stroke niacin (vitamin
D3) and niacin derivative niaspan significantly
improved functional outcome independently of
HDL-C levels due to improved angiogenesis (Chen
et al, 2007; Shehadah et al, 2010); again, this is
thought to be conferred mainly by eNOS via the PI3
K/Akt pathway.

Niacin and niacin derivative niaspan are potent
drugs to increase levels of HDL-cholesterin and thus
help to restore vascular function and reduce occur-
rence of subsequent cardiovascular events without
obvious side effect (Guyton et al, 2000; Grundy et al,
2002). However, a recently completed study (AIM-
HIGH (Boden et al, 2011)) could not detect signifi-
cant benefit of niacin treatment in addition to statins
compared with statins alone in primary prevention
of cardiovascular events; ischemic stroke was re-
corded as a secondary parameter.

Currently, a randomized double-blinded phase II
study is investigating whether niaspan can improve
recovery after ischemic stroke (Randomized, Con-
trolled Trial of Extended-Release Niacin (Niaspan,
Abbott Laboratories, Abbott Park, IL, USA) to
Augment Subacute Ischemic Stroke Recovery, start
date: April 2009, NCT00796887).

Another group of compounds known to increase
levels of HDL-cholesterol are liver X receptor
agonists (Brunham et al, 2006). TO901317, a syn-
thetic liver X receptor agonist, was shown to improve
neurological function after MCA occlusion in healthy
but not in eNOS-deficient mice (Chen et al, 2009).
The suggested neuroprotective mechanism is promo-
tion of angiogensis via increased eNOS phosphorylation,
but also antiinflammatory effects are discussed (Morales
et al, 2008). Further evaluation of the mechanisms
involved are necessary before clinical evaluation.

PI3 K/Akt pathway—S1177 phosphorylation—hor-
mones: Steroids hormones when used in pharmaco-
logical doses increase CBF and improve outcome
after experimental ischemic stroke (de Court et al,
1994; Bertorelli et al, 1998). This effect is due to a
rapid onset of transcription-independent eNOS ac-
tivity via the PI3/Akt pathway (Limbourg et al, 2002;
Hafezi-Moghadam et al, 2002). In an animal model
of transient cerebral ischemia, dexamethasone
increased CBF and reduced infarct volume for up
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to 3 days after MCAo in wild type but not in eNOS
knockout mice (Limbourg et al, 2002). Despite these
promising data, clinical trials yielded mixed results
(Patten et al, 1972; Bauer and Tellez, 1973); corticos-
teroids are therefore not recommended for the
treatment of acute stroke (Adams et al, 2007).

Other hormones are proposed to exert their
neuroprotective effect by an increase in eNOS
activity: Thyroid hormone-mediated neuroprotection
is mediated by the PI3/Akt pathway and eNOS
phosphorylation after acute stroke (Hiroi et al,
2006). Furthermore, estrogen confers increased
eNOS activity via the same mechanism (Haynes
et al, 2000; Simoncini et al, 2000). While these
results might add to our understanding of gender
related differences in stroke incidence and outcome,
it remains unclear whether hormone replacement or
treatment might be a tool to acutely increase CBF
after ischemic stroke. Adiponectin, an adipokine
generated by visceral fat cells was shown to increase
eNOS phosphorylation. Following MCAO, infarct
size was larger in adiponectin-deficient mice, an
effect reversed by increasing adiponectin expression
in its knockout mouse (Nishimura et al, 2008). Low
plasma levels of adiponectin have been implicated in
obesity, hypertension, and diabetes.

Although there is ample evidence that eNOS
phosphorylation is an important mechanism of
action for the hormones mentioned, one has to keep
in mind that given the multifaceted and sometimes
contrasting effects of hormones eNOS modulation
might not be the sole mechanism of action.

Other Therapeutic Strategies Conferring
Neuroprotection by Endothelial Nitric Oxide
Synthases Activation

There are a variety of other pharmacological and
nonpharmacological strategies that seem to exert
neuroprotection mainly via modulation of eNOS
activity.

Experimental studies proved that exercise
increases eNOS activity, thus improving infarct volume
and neurological outcome (Endres et al, 2003; Gertz
et al, 2006). The mechanism may relate to increased
shear stress. In line with these findings, the protec-
tive effect of prestroke exercise was absent in eNOS
null mice (Gertz et al, 2006). However, there is no
conclusive evidence that physical activity can be
neuroprotective when started after stroke (Johansson,
2003; Gertz et al, 2006). Nevertheless, the importance
of exercise in primary and secondary prevention of
ischemic stroke is undoubted.

Among other drugs thought to confer stroke
protection via the eNOS/cGMP pathway are the
phytoalexine resveratrol, the neuro- and cardio-
protectant found in red wine (Tsai et al, 2007),
peroxisome proliferator-activated receptor-y agonists
(Chu et al, 2006), and angiotensin II receptor 1
antagonists (Saavedra et al, 2006; Oyama et al, 2010).
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These approaches, however, need to be examined eNOS phosphorylation is the only important me-
more closely before clinical evaluation is feasible; as chanism or whether there are other important modes
with hormones, it remains to be elucidated whether of action.

In vivo NO-fluorescence
in cerebreal vessels

under iNO
Intravital microscopy
of cerebral vessels
during iNO
B Normoxia — physiological conditions

Release of NO on the venous side of the cerebrovasculature — venous vasodilatation

Ischemia/ Hyopxia — OEF T, arterial pO, | , pH |
Release of NO in an oxygen tension dependent way — at the arteriolar side — arterial
vasodilation — improvement of cerebral perfusion

CBF T
cBvV (1)

Figure 2 Nitric oxide (NO) inhalation (iNO). (A) Upon inhalation, NO is transported to the brain via the blood in a bioactive form; the
nature of this NO carrier (X) is not fully elucidated yet. Among the molecules discussed are S-nitroso-hemoglobin, S-nitrosothiols,
and nitrite. In the brain, inhaled NO leads to an increase of NO in the vessel wall (left inlet, in vivo NO fluorescence imaged with NO-
sensitive dye DAF-FM) and to dilatation of cerebral venules (right inlet, in vivo imaging of vessel diameter using FITC-dextran). (B)
NO inhalation—Putative mode of action: Bioactive NO is released via an oxygen-tension-dependent mechanism; under physiological
conditions this happens in the venular compartment of the cerebrovasculature. Release of NO leads to venular dilatation
and—thus—to an increase in cerebral blood volume (CBV) without influencing cerebral blood flow (CBF). During cerebral ischemia,
oxygen extraction fraction (OEF) increases leading to increased oxygen desaturation, lowering of arteriolar pO, and pH on the
arteriolar side of the cerebrovasculature. Under these conditions, NO release occurs also on the arteriolar side. This induces arteriolar
dilatation and, thereby, increase of CBF. Since the mechanism is restricted to ischemic vessels, normally perfused tissue is not
affected. NO inhalation therefore seems to be an ideal tool to counteract regional ischemia by increasing blood flow exclusively
to malperfused tissue. DAF-FM, 4-amino-5-(N-methylamino)-3’,6’-bis(acetyloxy)-2’,7’-difluoro-spirolisobenzofuran-1(3H),
9'-[9H]Ixanthen]-3-one, diaminofluorescein-FM diacetate; FITC, fluorescein 5-isothiocyanate.
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Inhaled Nitric Oxide Donors

As noted above, many promising strategies that
increase the availability of NO to the vessel wall
have distinct problems in the context of acute
cerebral ischemia. Nevertheless, a rapidly acting,
easily accessible treatment is actively being sought
that increases the availability of NO to acutely
improve CBF—especially within the penumbra.

Nitric oxide inhalation (inhaled nitric oxide, iNO)
has been used to treat diseases characterized by
pathological pulmonary vasoconstriction, for exam-
ple, pulmonary hypertension since the early 1990s.
Initially, it was hypothesized that NO was rapidly
inactivated in pulmonary vessels once in contact
with oxyhemoglobin, thus restricting the vasodila-
tory effect to the lung. This was consistent with the
findings that iNO therapy at moderate doses did not
alter systemic vascular resistance and—thus—sys-
temic blood pressure in experimental and clinical
studies. Based on this notion and the fact that other
significant adverse effects could be excluded, iNO
was approved for the treatment of persistent pul-
monary hypertension in neonates and later used for
other pulmonary conditions (Griffiths and Evans,
2005; Kinsella and Abman, 2005). Over the ensuing
decade, evidence was presented that strongly sug-
gested that inhaled NO led to distinct extrapulmon-
ary effects, for example, in mesenteric, renal, and
cardiac vessels. Recently, there is growing evidence
that iNO might be protective in reducing ischemia—
reperfusion injury within mesentery (Fox-Robichaud
et al, 1998), and myocardium (Nagasaka et al, 2008),
thus reducing tissue damage. While experimental
(Rosenberg et al, 1995; Lopes Cardozo et al, 1996;
Kusuda et al, 1999) and clinical (Vavilala et al, 2001)
studies could not detect changes in CBF during iNO
therapy, one experimental study revealed that while
it did not alter cerebral perfusion, iNO was shown to
possess a cerebrovascular effect (Kuebler et al, 2003).
Nitric oxide inhalation is a clinically approved
treatment that has few side effects that might
positively influence the outcome following ischemic
stroke. Terpolilli et al (2011) recently demonstrated
an effect of iNO on the cerebrovasculature using
in vivo microscopy. In their studies under physio-
logical conditions, iNO led to a significant dilatation
of cerebral venules, most probably due to an oxygen-
tension-dependent mechanism. Under conditions of
ischemia, iNO led to arteriolar dilatation and an
improvement in cerebral perfusion (see Figure 2).
After experimental ischemic stroke, iNO reduced
lesion size, improved CBF, cerebral metabolism, and
neurological outcome, in part dependent upon
improved collateral blood flow to the penumbra.
There were no obvious adverse effects of this treat-
ment. Clinical evaluation of these NO inhalation
effects is planned in the near future.

The extrapulmonary effects of other inhaled NO
donating agents such as nebulized sodium nitroprus-
side (Fattouch et al, 2005), inhaled ethyl nitrite

NO: considerations for the treatment of ischemic stroke
NA Terpolilli et af

npg)

(Auten et al, 2007), and inhaled nitrite (Blood et al,
2011) are being investigated in the context of
pulmonary pathologies because the observed effects
seem at least in part to be mediated by the same
pathways as iNO. In the case of inhaled ethyl nitrite,
neuroprotection after experimental subarachnoid
hemorrhage has recently been demonstrated (Sheng
et al, 2011), so that this might be another promising
inhalative treatment strategy for cerebral ischemia.

Conclusion

Reduction in NO signaling pathways have been well
documented after ischemic stroke, especially within
the blood vessel wall. Many strategies have been
used to restore these pathways in order to improve
CBF and improve histopathological and functional
outcome after cerebral ischemia. While some NO-
based therapeutical approaches have been imple-
mented into clinical guidelines for stroke prevention,
most strategies for acute stroke treatment are still in
the experimental stage and more research is needed
to explore novel, side effect-free and specific NO-
based therapeutic approaches for cerebral ischemia.
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